
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Cost in time of decentralizing the crawling system

A Scalable P2P RIA Crawling System with Partial Knowledge

Khaled Ben Hafaiedh, Gregor v. Bochmann, Guy-Vincent Jourdan, Iosif Viorel Onut

School of Electrical Engineering and Computer Science - University of Ottawa

Introduction – Traditional vs. Rich Internet Applications

Aim

 Distributed centralized crawling has been introduced to reduce the amount of time required to

crawl RIAs.

 It consists of running multiple crawlers simultaneously and sharing the searching space in a

single storage unit, called the controller.

Challenges and Motivation

 Scalability: The controller may become a bottleneck when it is accessed simultaneously by a high

number of crawlers.

 Fault tolerance: A failure occurring within the controller may result in the entire loss of the graph

under exploration.

Architecture

 A peer-to-peer crawling system composed of multiple controllers in the form of a

chordal ring.

 States are partitioned into disjoint sets, each of which is handled by a distinct controller.

 Each controller is associated with a certain number of crawlers.

 Crawlers and controllers are independent processes running on different computers.

 Each crawler gets access to all controllers through a single controller it is associated

with.

Acknowledgments

This work is supported in part by IBM and the Natural Science and Engineering Research Council of

Canada.

DISCLAIMER

The views expressed in this poster are the sole responsibility of the authors and do not necessarily

reflect those of the Center for Advanced Studies of IBM.

Contributions

Conclusion & Future Work

 Simulation results show that the Forward Exploration strategy outperforms the Reset-Only, the

Shortest Path based on Local Knowledge and the Shortest Path based on Shared Knowledge

strategies.

 This is due to its ability to globally find a shortest path, compared to all other strategies that are

based on partial knowledge.

 This makes Forward Exploration a good choice for general purpose crawling in a decentralized

P2P environment.

 Some of the areas that we are currently working on are:

• Fault-tolerance.

• Applying other crawling strategies such as the menu model, the component-based model and

the probabilistic strategy.

Choosing the next event to explore from a different state

Asynchronous Communication Pattern (in RIAs)

User Interaction Partial Page Update Partial Page UpdatePartial Page Update

Server Processing Server Processing

Request Request Request

Response

Response

Response

Figure 1. Asynchronous Communication Pattern in RIAs

 Scalability: The distribution of responsibilities for the states among multiple controllers in the underlying

P2P network, where:

 Each controller maintains a partial model of the application

 A high number of crawlers are associated with each controller, which allows for scalability.

 Knowledge sharing: Defining and comparing different knowledge sharing schemes for efficiently

crawling RIAs in the P2P network.

Distributed RIA Crawling

Methodology

The greedy strategy

 With one single crawler

 Exploring an event from the current state if there is any unexplored event.

 Otherwise, the crawler may execute an unexplored event from a different state, until all

transitions are traversed.

 Distributed centralized system

 Each crawler may retrieve the required graph information by communicating with the single

controller.

 It then executes a single unexecuted event from its current state if such an event exists, or

may move to another state with some unexecuted events based on the information available

on the single controller.

 In the P2P environment
 States are partitioned among the controllers.

 The controller responsible for storing the information about a state is contacted when a crawler

reaches a new state.

 For each request, the controller returns in response a single event to execute on this state.

 If no event can be executed on the current state of the crawler, the crawler may

communicate with other controllers to execute events from another state.

Figure 4. Exchanged messages during the exploration phase.

Challenges

 Efficiency: Crawlers must efficiently execute the graph transitions by only communicating with as

few controllers as possible.

 Termination detection: An idle crawler cannot know a priori if all transitions on all states that are

maintained by different controllers have been already executed or not.

Four approaches for finding and executing events on a state other that

the current state of the crawler in the P2P crawl system:

Reset-Only
 A crawler can only move from a state to another by performing a Reset.

 Reset-Only is the simplest way for distributively crawling RIAs.

 However, this approach results in a high number of resets performed, which

may increase the time required to crawl a given application (cost).

Shortest Path based on local knowledge

 A controller may use its local transitions knowledge to find the shortest

path from the crawler current state leading to the closest unexecuted

event.

 Since the knowledge is partial, the number of known transitions to a

controller remain relatively low.

Shortest Path based on shared knowledge
 The executed transitions are locally stored by intermediate controllers when

a message is forwarded through the DHT.

 The transitions knowledge is significantly increased among controllers

with no message overhead.

Forward-Exploration
 It consist of globally finding the optimal choice based on the breadth-first

search, by sequentially moving to the neighboring states from the

current state of a visiting crawler.

 Preventing different controllers from visiting states that have already been

visited by other controllers and have no unexecuted events:

 Controllers may share during the forward exploration their knowledge

about all executed transitions on these states, with other controllers.

 A controller can only jump over a visited state if and only if all transitions

have been executed on that state.

Traditional Web Applications

 The typical interaction between the client and the server in a traditional web application consists of

sending a request for a URL from the client to the server so that the corresponding web page is

downloaded in response for each URL request.

 Each web page is identified by its URL and has only a single state.

Rich Internet Applications

 Modern web technologies gave birth to interactive and more responsive applications, referred to as

RIAs.

 RIAs combine the client-side scripting with new features such as AJAX (Asynchronous JavaScript

and XML).

 JavaScript functions allow the client to modify the currently displayed page, by communicating with

the server asynchronously.

The purpose of a RIA crawler is to automatically exploring states of a rich internet application.

Goal

 Content indexing

 Testing for security

 Building application models

RIA Crawling

Results

Tested large-scale application: Bebop RIA

Scalability of our approach

 We consider the strategy with the best performance (Forward Exploration) and we plot the

simulated time (in seconds) for an increasing number of controllers from 1 to 5, with 20

crawlers for each controller.

Figure 3. Distribution of states and crawlers among controllers.

Figure 5. Possible path in the

Reset-Only approach

Figure 6. Possible path in the shortest

path based on local knowledge approach

Figure 7. Possible path in the shortest path

based on large knowledge approach

Figure 8. Optimal path with the

Forward-Exploration approach

Figure 9. Comparing different sharing schemes for crawling the Bebop RIA.

 Based on our preliminary analysis of experimental results, a controller can support up to 20 crawlers without

becoming overloaded.

 We plot the simulated time (in seconds) for an increasing number of controllers from 1 to 20, with steps of 5,

while the number of crawlers is constant and set to 20 crawlers.

 We compare our results to the ideal performance (Global Knowledge scheme) where all controllers have instant

access to a globally shared information about the state of knowledge at each controller.

Figure 10. System scalability for crawling the Bebop RIA.

Figure 2. A Distributed Centralized Crawling System.

 5,082 states

 468,971 transitions

 Direct Link:

http://ssrg.eecs.uottawa.ca/bebop/

 The worst performance is obtained with the Reset-Only strategy, followed by the Shortest

Path with Local Knowledge strategy (Due to Resets performed and partial knowledge).

 The Shortest Path based on shared Knowledge strategy comes in the second position and

significantly outperformed both the Reset-Only and the Shortest Path based on Local

Knowledge strategies as controllers has more knowledge about the application graph.

 The best performance is obtained with the Forward Exploration strategy by finding globally

the optimal choice based on the distributed breadth-first search.

 Our simulation results show that the crawling time decreases near optimally as we increase

the number of crawlers.

 We conclude that our system scale with the number of crawlers when the controllers are not

overloaded.

http://ssrg.eecs.uottawa.ca/bebop/

